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Abstract: In this paper we have pointed out with a philosophical discussion that the 

nonstandard elements have not only wide scope of application in physics but also in other 

related fields e.g. mathematics, statistics etc. 

 

1.   Introduction 

A thorough and detailed application of the nonstandard elements has already 

been made by Robinson whose approach is based on logic [1]. However, it will 

really be useful if one makes their application without any appeal to logic. We 

give here a brief overview of some of them. 

2.  Hyperreal Numbers 

Hyperreal numbers can help us to understand why results that are obtained 

in a non-rigorous way are nevertheless correct. For the sake of illustration and 

brevity we focus on a single notion from the calculus - the derivative. The 

derivative expresses the rate of change of the dependent variable with respect to 

the change in the independent one. If the independent variable is interpreted as 

time and the dependent variable as displacement, the derivative is the 

(instantaneous) velocity. If the independent variable is plotted as abscissa and the 

dependent variable as ordinate, the derivative is the slope of the tangent at a point 

on the graph of the function. 

Leibnitz’s development of the calculus (around 1674) is characterised by 

three important ingredients: 

(i) Use of infinitesimals: Leibnitz’s notation of the derivative as a quotient of 

infinitesimals e.g. dy/dx is still in use in mathematics today although in standard 

analysis the derivative cannot be interpreted as a quotient.  

(ii) Law of continuity: The law of continuity or Souverian principle says that the 

rules of the finite also hold in the infinite and vice versa. It is related to the 

transfer principle in nonstandard analysis (NSA). 
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(iii) Law of transcendental homogeneity: The law of transcendental 

homogeneity says that when comparing two quantities, the quantity with a lower 

order of infinity can be ignored. It is related to the standard part function in NSA 

[3]. 

 Newton developed his version of the calculus (around 1666) with physics in 

mind which led him to a dynamic concept of the derivative. He thought of the 

derivative of a continuous function and called as the fluxion of a fluent. His dot 

notation of the derivative e.g. ẋ for dx/dt is still in use in physics today although 

Newton did not base his calculus on the notion of the infinitesimal as Leibnitz 

did. However, infinitesimals do appear in his work too—both as infinitely small 

period of time and as moment of fluent quantity.  

  Berkeley famously criticised the use of infinitesimals and evanescent 

quantities in his work ‘The Analyst’. Berkley was so influenced that many 

believed that infinitesimal had to be banned from mathematics once and for all. 

However, Katz and Sherry recently (2012) pointed out a flaw in Berkeley’s 

criticism. 

3.  Standard and Nonstandard Analysis 

     The modern approach to standard analysis was developed by the great 

triumvirate Cantor, Dedekind and Weierstrass. For limit Weierstrass introduced 

the modern epsilon-delta definition which goes back to Bolzano in 1817. This 

allows us to define the derivative as a limit of the quotient of differences [2]: 
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 In nonstandard analysis the classical derivative is defined by Robinson as 

the standard part of a quotient of infinitesimals in R
*
:  
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where y*(x) : R* → R* is the hyperextension of the real function y(x) : R → R 

and  is an infinitesimal in R*.  
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In standard analysis the sequence <0.1, 0.01, 0.001, …, 10
–n

, …> converges 

to 0. It is a null sequence. Likewise in standard analysis 0.999… is exactly equal 

to (or just a different notation for) 1 for an amusing overview of various proofs. 

Nevertheless, the intuition that 0.999… is infinitesimally smaller than unity is a 

resilient one-not only among students in mathematics class every so often. 

By looking at the ultrapower construction of R* one may convince oneself 

that the equivalence class under a free ultrafilter of <0.1, 0.01, 0.001, …, 10
–n

, 

…> is different from that of zero. The former sequence is different from zero at 

every position whereas the latter sequence is exactly zero at every position. 

Hence, the index set of position where both sequences are exactly equal is the 

empty set which is not in the free ultrafilter. Therefore, they correspond to 

different hyperreal numbers [4]. 

Likewise the sequence <0.9, 0.99, 0.999, …, 1–10
–n

, …> is different from 

the constant sequence <1, 1, 1, …, 1, …> at every position and, hence, does not 

belong to the same equivalence class under a free ultrafilter. 

Observe that this does not contradict 0.999… = 1 since the number 

|<0.9, 0.99, 0.999, …, 1–10
–n

, …>| ≈ u 

is not equal to the real number 0.999… . In fact, by observing that the standard 

part of this number is 1, we could use it to prove that 0.999… = 1. 

The above is a hyperreal number strictly smaller than 1, differing from it by 

the infinitesimal quantity 

|<0.1, 0.01, 0.001, …, 10
–n

, …>| ≈ u. 

4.  Applications 

4.1  In Physics  

Physicists have continued to speak of infinitesimal quantities since the 

development of calculus, seemingly not bothered by the foundational issues that 

were in the mind of the mathematicians. Therefore, the combination of physics 

and nonstandard analysis seems to be very natural one. It allows physicists to 

continue their appeal to the intuitive notion of infinitesimals, now knowing that 

there is a rigorous mathematical basis for their concept. 

Many applications of NSA in physics are related to differential equation and 

stochastic equation. NSA has been applied to quantum mechanics in multiple 

ways, including Feynman path integral and quantum field theory. Moreover, it 

seems to be a very natural idea to re-examine the quantum classical limit in this 

framework by considering Planck’s constant (h) as an infinitesimal. 

4.2  In Mathematics  

The most important application of NSA is to make the proof shorter, easier 

or both-alleviating epsilon-delta management. An early expression of this can be 



P.K. Karn
 

                 Orissa Journal of Physics, Vol. 22,  No.2, August 2015 258 

found with Lagrange. NSA can be used to analyse common intuition concerning 

infinitesimals whereas the history of calculus is dominated by the concept of 

infinitesimals. NSA can also shed more light on problems related to infinitely 

large. 

4.3  In Statistics 

The fields of nonstandard measure theory and nonstandard probability 

theory are among the most developed areas of application of NSA. A probability 

function is regular if it only assigns probability zero to the impossible event. 

Because of finite additivity it is equivalent to only assigning probability one to 

the certain event. It is well known that standard probability functions based on 

Kolmogorov’s axioms for probability can violate regularity in the case of 

countable infinite sample spaces and always do so in the uncountable case. 

4.4  In Mathematical Economics 

 Hyperreals have been used in mathematical economics also. 

5.  Physics and Rethinking the Continuum 

We often use continuum as a synonym for the standard reals. However, this 

is nothing but one formalisation of the concept of physical continuum. Hyperreals 

form an alternative formalisation of the concept. Like the standard reals the 

hyperreals are infinitely divisible. In particular, infinitesimals are infinitely 

divisible. However, many applications make use of hyperfinite sets, which, like a 

finite set, do contain a smallest non-zero element. Therefore, such models are 

discrete or chunky, rather than continuous. Another distinction to be made here is 

that, besides the hyperreals, there are other systems that also contain 

infinitesimals but which may have very different properties. Archimedes and 

Zeno, for instance, conceived of infinitesimals as dimensionless points. 

6.  Conclusion 

Thus we see that nonstandard elements will really be useful if we make their 

application without any appeal to logic in different branches of physics as well as 

in other related fields. 
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